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I. INTRODUCTION

The study of the 3-D perturbed motion of a rotating fluid which fills a
spinning and coning cylinder shows that the solution depends on the cylinder

aspect ratio A = c/a and the Reynolds number Re = a24/v, where c = half

height, a = radius, = spin of the cylinder and v = kinematic viscosity of
the fluid. The forced oscillation problem was solved for the pressure in
Reference 1 and for the moment exerted by the fluid on the cylinder in Refer-
ence 2 assuming linear, viscous perturbations of the steady state, i.e., solid
body rotation. A modal analysis, matched asymptotic expansions for the flow
near the endwalls and an expansion in outer flow spatial eigenfunctions were
empl oyed.

106 The ranges of interest of the parameters are 0.5 - A - 5 and 1 < Re
106, determined by the values for which experimental data, of various

sorts, are available. The theory of References 1 and 2 is asymptotic for
Re + c and requires the solution of an eigenvalue (e.v.) problem. The
complex e.v. are denoted by X and the eigenfunctions are sin Ax, cos Ax. The
"basic set," Xk, satisfies Xk + k7/2A for Re + -, where k = 1,3,5... Only

this set was considered in References 1-4.

The existence of another eigenvalue, As9 where Xs = O(Re1/2) and

therefore is not in the basic set, is shown here; in this limit the coning
frequency, T, is fixed and T * + 1,3. The limits of all the e.v.'s as coning
frequency approaches spin frequency, T + 1, with Re fixed, are also
considered.

1. Gerber, N., Sedney, R., and Bartos, J. V., "Pressure 'foment on a Liquid-
Filled Projectile: Solid Body Rotation," U. S. Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-TR-02422, October
1982. (AD A120567)

2. Gerber, N., and Sedney, R., "Moment on a Liquid-Filled Spinnind and
Nutating Projectile: Solid Body Rotation," U. S. Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-TR-02470, February

*. .* 1983. (AD A125332)

3. Wedemeyer, E.H., 'Viscous Corrections to Stewartson's Stability
K Criterion," US Army Ballistic Research Laboratory, Aberdeen Proving

Ground, Maryland, Report No. 1325, June 1966. (AD 489687) (See Also AGARD
Conference Proceedings, No. 10, Mulhouse, France, pp. 103-120, September
1966)

4. Murphy, C.q., "Angular Motion of a Spinning Projectile with a Viscous
Liquid Payload," US Army Ballistic Research Laboratory, Aberdeen Provin.?
,round, Paryland, ARRRL-MR-03194, August 1982. (AD A118676) (See Also
Jounal of uid an, Corl3nd Dynamics, Vol. 6, July-Au(ust 1983, pp.

280-286)
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The eigenvalue Xs exists for all Re. It is definitely an outlier with

respect to the basic set. The 1rm (X s)I is always larger than that for any

Ak and its inclusion has a definite effect on the solution. As an

example, pressure coefficient at the intersection of the endwall and sidewall
is 41% less than that obtained without AX at - = 0.5 for Re = 10 and A =
3.148.

The determination of As and some implications of its inclusion in the

theory of Reference 1 are discussed in this report. The simple asymptotic
methods used to determine As show their efficacy not only in analysis but also

in the successful computation of the pressure; straightforward calculation
would have required more than the 14 significant figures available in the CDC
7600.

II. PRECIS OF REFERENCE 1

Certain parts of the theory of Reference 1 are needed here; the major
points are:

a) The motion of the cylinder (projectile) is given by Ko exp (iftt)
where t is time, f = (1 - i6)[, T is nutational frequency/f and 6 is the yaw
growth rate. Ko is the magnitude of the yaw, assumed small, and is the

parameter used to linearize the Navier-Stokes equations in the perturbation
analysis. Lengths, time, velocity and perturbation pressure are made non-

dimensional by a, V1, af and K., pa2 2 , respectively, where p is the liquid
density.

b) The flow variables are assumed to vary as exp [i(f~t-8)] where 6 is
the azimuthal angle coordinate; the variations with x and r, the longitudinal
and radial coordinates, respectively, are governed by linear partial differ-
ential equations and the no-slip conditions on the sidewall and endwalls.

c) These equations are solved using a modal analysis. The x-variation
is determined by a second-order, non-self-adjoint system for spatial eigen-
values, A, and eigenfunctions sin Ax and cos ,x.

d) The solution satisfies the boundary conditions on the sidewall but
not on the endwalls. In the neighborhood of the latter, it must be taken as
the outer solution and then matched to an inner (boundary layer type) solu-
tion. The matching is asymptotic for Re +

e) First term matching provides a solution to 0 (Re1 ) and corrected
endwall boundary conditions that determine the A.

f) The A are the roots of

8



F (z,)- cos z + ez sin z = 0 (2.1)

where z = AX, c = 6c/A and 6c is the complex displacement thickness given by

6c = -(I+T)/2a(I-T) + (3-T)/2(1-T)

= [Re (3-T)/2]1/2 (I-i) (2.2)

= [Re(l+T)/2] !/2 (1+i), where 6 = 0, f = T, for

convenience.
The range of T is limited to -1 < T < 3 in order that inertial waves exist in
the rotating fluid; this is the range in the inertial coordinate system
employed here compared to the frequency range (-2,2) in a rotating coordinate
system.

Since (2.1) is solved by iteration, first guesses for the roots are
required; for Re >> 1

z = (kn/2)(1-c) -1 , k odd, (2.3)

was used. This approximation can be derived in several ways; see, e.g. (3.2).

By definition T is real. In principle there is no restriction on T,
except T + 1, 3. In practice 0 < T < 0.2 for most projectiles and
-0.5 < t < 0.5 for most experimental simulations of a spinning projectile.
Here for definiteness, the range of r will be taken to be -1 < T < 1. From
(2.2) it follows that

-7/2 < arg c < -w/4 (2.4)

for -1 < T <.

The question of how small Re can be and still obtain reasonably accurate
solutions, using References 1 and 2, will not be discussed because it is not
relevant to solving (2.1).

III. ASYMPTOTIC ANALYSIS OF THE ROOTS

A. Limit £ + 0

The roots of (2.1) depend on the single parameter e which is proportional

to [(1-T)Re112] " 1. The limit of primary interest is £ + 0, which could
correspond to Re + -, T fixed. The limit c + -, corresponding to t + 1 and Re
fixed, will also be considered; the limit T +-1 (or even T + 3) can be
treated by the same techniques but will not be considered here.

9



If z is a root of (2.1), -z is also. Since the eigenfunctions are
sin Xx and cos Xx, and because of the symmetry properties of the solution1,

only the roots of one sign are required. The tesilts obtained below show that
only roots with

-Tr/2 < arg z < 0 (3.1)

are appropriate. First let z = 0(1) for c + 0 so that cos z is the dominant
term in (2.1). Thus F + cos z and z + + k7r/2, k = 1,3,..., but only the
positive sign need be considered. This gives the zeroth approximation to the
basic set of roots,zk, defined by zk z 0(1) or zk = k/2 for e + 0. The basic

set was used in References 1-4. The zeroth approximation can be improved by a
regular perturbation. Assuming a power series in e yields

zk = (ki/2)(l + c + ... ) (3.2)

so that -w/2 < arg zk < 0.

It is not possible to have cz sin z the dominant term in (2.1). The
possibility that neither term dominates requires cz = 0(1). Since z -

0(1/e), the asymptotic forms for sin z and cos z are required. Using

sin z = (-i/2)(e iz - e- iz ) cos z = (1/2)(eiz + e- iz)

(3.3)

- (-i/2)eiZ(l - e-2iz) = (1/2)eiZ(l + e- 2 iz )

the asymptotic forms are, for -r< arg z < 0, IzI ,

sin z - (-i/2)eiz cos z ~ (1/2)e iz. (3.4)

Substituting (3.4) into (2.1) yields zo, the zeroth approximation to the
asymptotic solution of (2.1):

zo  -i/c. (3.5)

10
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(For 0 < arg z < 1T, zo 
= +i/E is obtained, which need not be considered.)

Note that because of (2.4), -7r/2 < arg z0 < 0. Therefore z o = O(Re 1 / 2 ) for

Re + - and is distinct from any member of the basic set. Only z = 0(I) and
z = 0(1/c) roots are possible; all other orders give contradictory or
inconsistent results.

The eigenvalue, which is O(ReI / 2 ) for Re + -, is denoted by zs = zO .

With respect to the basic set zs is a singular perturbation. Depending on the

iterative method used to solve (2.1) zs can be determined for small Re (say

Re = 10) and - > .5 using certain 0(1) first guesses. However, using zo as

- the first guess and Newton's method to solve (2.1) will yield zs for all T and

Re unless Re is so large that jeiZoj exceeds the capacity of the computer so
that the Newton method fails. But for such Re, zo is a very close

approximation to zs. Furthermore the approximation zs = zo can be easily

inproved so that the iterative solution of (2.1) for z is, in fact, no longer

necessary for jej small enough.

Let the method of undetermined coefficients assume a series expansion

z s = zo( + cly + ... ) (3.6)

in a sn-tall parameter Y. With (3.3), (2.1) can be written as

g(z) 1-I + e 2 i z - icz(1 - e 2 i z) =. (3.7)

-Since g (z.) = 2e- 2/c, the small parameter Y e- 2/c is suggested. If (3.6)

contains only powers of y, substitution into (3.7) leads to a contradiction so
that the ci, i > 1, cannot be determined. The reason for this is that In Y

iters are required in the expansion. This can be shown if iteration is used
to solve (3.7), after rewriting it as

(1 + yl/( - Y1)

_-- Z/z o .
O$W%*
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The iteration is defined by

h m €o

(3.8)
= nn+1 (1 + y )/(I - n )

and the result for n 1 is

z /Zo = 1 + 2y + 2y2 + 4y2 In y + O(y3 in Y).(39

The method of undetermined coefficients works with these functions of y.
Equation (3.9) gives the first four terms in an asymptotic series which

appears to diverge for Iyl> 10-3 . By a theorem in Reference 5 the iteration

(3.8) converges to a unique root if IyI < 10- 2 approximately.

, Since z, and the basic set, zk, are unique and since only roots of 0(1)

and 0(1/E) are permissible, all roots of (2.1) have been determined for E + 0.

B. Limit c +

Next the limiit E + - is considered, i.e., T + 1, Re + 0 or both. Because
the present work is based on the Re + - theory of Reference 1, it would be
inappropriate to allow Re + 0. From (2.2), if T = 1-s where s > 0 and s << 1,
then

. (-i/A Re1 /2 s)[1 + (3is/4) + O(s2)] (3.10)

In this section all limits are taken with respect to F + . Again there are
only two kinds of roots of (2.1).

(i) z = 0(1) for which Ez sin z is the dominant term and the zeroth
approximation to the roots is

zt = N-r, 1 = 1, 2, ... (3.11)

5. Isaacson, E., and Keller, H. B., Analysis of Nw"merical '4ethods, John Wiley
& Sons, New York, 1966, p. 86.

12

• ............



the root z = 0 being discarded since it is not 0(l). The next approximation
gives

zt = N= - (I/Nns). (3.12)

This expression can be obtained by substituting z = N7 + € into (2.1),
expanding sin (D and cos P in power series, and retaining only terms through
first order in P.

(ii) z = O( -1/2) for which neither term in (2.1) is dominant. There is

a single root, zs; its zeroth approximation is

s= -i/1 1 2  (3.13)

with -R/2 < arg E 1/2 < 0. Although it has not been proved it seems clear that
z z The next approximation gives

Z' = (-i/61/2) - (i/3c3/2)" (3.14)

The approximations (3.11) and (3.13) or (3.12) and (3.14) can be used as

first guesses in an iterative scheme to get the roots of (2.1); for the
- -' largest c tried, II = 1.08, they approximated the roots to only one

significant figure. Another way to obtain a reliable first guess for
moderate e is to rewrite (2.1) in terms of cot z (take z = 11t + p) and use
the first two terms in the expansion of cot P. The result is

= [-NTiE + {(tjrE:) 2  _ 4(E - 1/3)}/L]/[2(5  - 1/3)] + Nut. (3.15)

Some representative results are shown in Figures 1 and 2. The roots of
(2.1) are plotted in the (zR, zI) plane for Re = 10 and 100, = 0.1 and A =

3.148 in Figure 1. All the zk, k = 1, 3, .. lie close to the real axis;

the zs for the two values of Re are noted. As Re increases, the zk do not

change much but zs = O(Rel/ 2 ). For Re = 10, £ 0.0836 - 0.1346 i and-3
Y (-0.348 + 1.23i)10 3  and for Re = 100, s = 0.0264 - 0.0462 i and

* Y = (-5.65 - 4.35i)10 - 0 . In Figure 2, the roots are plotted for Re = 10 and
Wj A = 3.149 for - = 0.1 and 0.9. For the latter either (3.5) or (3.13) can be
.,- used as first guess in Newton's method to obtain zs although (3.13) is a

better guess, as expected. Also for this case Real (zs) < Real (zk) for all
-.y. odd k.

13
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IV. SOME EFFECTS OF INCLUDING z s IN THE THEORY OF REFERENCE I

The existence of zs has a number of consequences in the theory of

Reference 1, some of which are mentioned here. The effect on the non-
dimensional endwall pressure, Cp at r = 1, of including zs is shown in Table 1

for T = .5, A = 3.148, and four values of Re. Ten terms were used in the

series to calculate Cp, i.e., ten values of zk or nine plus zs. For Re < 103

inclusion of zs makes a significant difference. Since the theory of Reference

1 is asymptotic for Re + , there is a separate question of how accurate that

theory is for Re < 103; this question is not discussed in detail here.

Table 1. Cp at r = 1

-C. = .5 A 3.148

qu Re 10 102 103 104

With zs  .0819 .836 .668 .470

Without z. .1398 .793 .662 .470

and Figure 3 shows Cp vs r for Re = 100, A = 3.148 and T = .1, including zs
and not. The effects are negligible for 0 < r < .45; for r = I the Cp that

includes zs is 16% larger than that if zs is not included. The results for Cp

from the spatial e.v. method (not discussed here) are also shown; it can be
shown that these are accurate to the number of significant figures plotted and
therefore show the error in the results of Reference 1, even including zs.

In Reference 1, the satisfaction of the sidewall boundary conditions,
at r = 1, requires the expansion of x, -A 4 x < A, in terms of the

eigenfunctions sin zkx/A and sin zsx/A. Two methods of determining the

.Z . coefficients were given: a least squares fit of the partial sum to x and the
eigenfunction expansion obtained from the boundary value problem satisfied by
the e.v. and eigenfunctions. This is not a self-adjoint problem so the
eigenfunctions are not orthogonal but they are biorthogonal with respect to

-tq the solutions of the adjoint problem. This fact enables bk and bs, the
*1 coefficients in the expansion

x = z bk sin zk x/A + bs sin zS x/A (4.1)

0.5., 14
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to be determined analytically, using

bk = b (Zk)

,s  b(zs) (4.2)

b(z) = (2A/z2) ( + 2 z 2) sin zl(l + e2 z - E;).

The calculation of bk is straightforward because zk is 0(1) but the

evaluation of bs is tedious, time consuming and could require more than the 14

significant figures available in the CDC 7600 for Re > 100. The reason for
this is that the numerator of bs goes to zero exponentially, which can be seen

from (3.5), (j.9) and the fact that I + E2Zs2 ~-4y = -4e-2/ . If bs is

evaluated from (4.2), without using asymptotic formulas, a large number of
significant figures is required in zs; this is illustrated in Table 2 for the

quantity called u s(1) = -i [2T (1-T)/(1+T)] bs in Reference 1.

Table 2. Effect of Significant Figures in z

Re =100 A =3.148 T .1

"SIG(z s) 5 7 9 11 13

Real(us (1)) 1.55 x 1O-  1.63 x 10-5 -2.85 x 10-r -2.12 x 10-6 -2.132 x 10-6

NSIG (zs) is the number of significant figures in zs used in (4.2); similar
behavior is found for Imag (us (1)). In contrast, if (3.5) and only the first

- two terms of (3.9) are used to derive the asymptotic form of bs

bs  i 4A e e ,

then Real (u (1)) -2.131 x 10-6 is obtained from this simple calculation
5

using four significant figures for F (i.e., zs); this differs by 1 out of

2000 from the results given in Table 2 for NSIG (zs) = 13. The power of
asymptotic methods is shown by this example. In addition, for Re > iO, NSIG

S14 would be necessary, at which point it would be impractical to use the CDC
7600. The way to proceed is to make use of asymptotic methods.

15
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A check on the relative contribution of zs can be made by computing the

sum and the zs terms in (4.1). For x = A these should add to A. With the sum

denoted by Ek, tne following results are obtained for Re = 100, A 3.148,
t= .1:

Real (Zk) = 2.9815 Im (Ek) = .26793

Real (bs sin zs = .1665 Im (bs sin zs) = -.26799

3.1480 -6 x 10- 5

The exact results are 3.148 and 0; 49 terms were used in k. Clearly it is
essential to include the zs terms.

Since b sin zs = 0 (E), the contribution of the z term to the series

expansion and, ultimately, the pressure, approaches zero as Re -1/2. Since
the calculation in References I and 2 were made for Re > 1,000, inclusion of
the zs term would have a negligible effect on those calculations.
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LIST OF SYMBOLS

a radius of cylinder [cm]

A c/a = aspect ratio of cylinder

bk, bs coefficients in biorthogonal eigenfunction expansion of
f(x) = x (See (4.1) and (4.2))

c half-height of cylinder [cml

-p pressure coefficientp-.

e.v. abbreviation for eigenvalue

f (1-i 6

F cosz+ ez sin z

k odd integer

Ko  amplitude of projectile angular motion [non-dimensional]

r radial coordinate /a

2

Re Reynolds number = a /v

s 1 -T

t time [sec]

u s() -i [2T(I-T)/(I+ )] s

x longitudinal coordinate/a

z AX

Zk root in basic set of roots of (2.1)

ZN root in basic set of roots of (2.1) for c +

'"2



-jr . .,. )

K.' LIST OF SYMBOLS (Continued)

zs  0(e) root of (2.1)

z, so O(C" 1/2) root of (2.1)

z' -j/el/2 (see (3.13))

zo -i/c, (see (3.5))

ye
- 2 1c

6 (lt) x yaw growth per radian of nutation

6c complex displacement thickness

-E cc/A

e azimuthal coordinate

spatial eigenvalue

2
kinematic viscosity of liquid [cm /s]

P density of liquid [g/cm 3]

nutational frequency of cylinder/$

spin rate of cylinder [radians/s]
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Errata for BRL-TR-2727

! 1. The enclosed sheet contains corrected versions of Figures 1

and 2 for pages 17 and 18 of the following BRL technical

report: R. Sedney and N. Gerber, *Asymptotic Analysis of the

- Roots of a Certain Transcendental Equation, BRL-TR-2727, April

> 1986, US Army Ballistic Research Laboratory, Aberdeen Proving

Ground, MD.

2. P.10, 6th line from bottom -- the value of cshould be

£= 0.0264 - 0.0426 i.

NATHAN GERBER
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